Use Synthetic Division.

1) \(\frac{n^4 - 5n^3 - 16n^2 + 21n - 9}{n + 3} \)

2) \((a^3 + 2a^2 - 56a + 48) \div (a - 6) \)

3) \((v^3 - 3v^2 - 35v + 25) \div (v + 5) \)

4) \((6n^3 + 17n^2 + 5n - 10) \div (n + 2) \)

Use Synthetic Substitution (Remainder Theorem) to evaluate each function at the given value.

5) \(f(a) = a^3 - 4a^2 + 8a - 22 \) at \(a = 3 \)

6) \(f(x) = 2x^4 + 18x^3 + 38x^2 + 8x - 16 \) at \(x = -6 \)

7) \(f(x) = x^3 - 9x^2 + 16x + 6 \) at \(x = 3 \)

8) \(f(x) = x^4 + x^3 - 21x^2 + 9x - 25 \) at \(x = 4 \)

Factor each and find all roots.

9) \(x^4 - 9 = 0 \)

10) \(x^4 + 8x^2 - 9 = 0 \)

11) \(x^3 - 3x^2 - 2x + 6 = 0 \)

12) \(x^3 - 4x^2 - x + 4 = 0 \)

13) \(x^4 + 7x^2 + 6 = 0 \)

14) \(x^4 + 10x^2 + 25 = 0 \)
Factoring and Solving Higher Degree Polynomials

Use Synthetic Division.

1) \(\frac{n^4 - 5n^3 - 16n^2 + 21n - 9}{n + 3} \)
\[n^3 - 8n^2 + 8n - 3 \]

2) \((a^3 + 2a^2 - 56a + 48) \div (a - 6) \)
\[a^2 + 8a - 8 \]

3) \((v^3 - 3v^2 - 35v + 25) \div (v + 5) \)
\[v^2 - 8v + 5 \]

4) \((6n^3 + 17n^2 + 5n - 10) \div (n + 2) \)
\[6n^2 + 5n - 5 \]

Use Synthetic Substitution (Remainder Theorem) to evaluate each function at the given value.

5) \(f(a) = a^3 - 4a^2 + 8a - 22 \) at \(a = 3 \)
\[-7 \]

6) \(f(x) = 2x^4 + 18x^3 + 38x^2 + 8x - 16 \) at \(x = -6 \)
\[8 \]

7) \(f(x) = x^3 - 9x^2 + 16x + 6 \) at \(x = 3 \)
\[0 \]

8) \(f(x) = x^4 + x^3 - 21x^2 + 9x - 25 \) at \(x = 4 \)
\[-5 \]

Factor each and find all roots.

9) \(x^4 - 9 = 0 \)
Factors to: \((x^2 - 3)(x^2 + 3) = 0 \)
Roots: \(\sqrt{3}, -\sqrt{3}, i\sqrt{3}, -i\sqrt{3} \)

10) \(x^4 + 8x^2 - 9 = 0 \)
Factors to: \((x - 1)(x + 1)(x^2 + 9) = 0 \)
Roots: \(1, -1, 3i, -3i \)

11) \(x^3 - 3x^2 - 2x + 6 = 0 \)
Factors to: \((x - 3)(x^2 - 2) = 0 \)
Roots: \(3, \sqrt{2}, -\sqrt{2} \)

12) \(x^3 - 4x^2 - x + 4 = 0 \)
Factors to: \((x - 4)(x - 1)(x + 1) = 0 \)
Roots: \(4, 1, -1 \)

13) \(x^4 + 7x^2 + 6 = 0 \)
Factors to: \((x^2 + 1)(x^2 + 6) = 0 \)
Roots: \(i, -i, i\sqrt{6}, -i\sqrt{6} \)

14) \(x^4 + 10x^2 + 25 = 0 \)
Factors to: \((x^2 + 5)^2 = 0 \)
Roots: \(i\sqrt{5} \text{ mult. } 2, -i\sqrt{5} \text{ mult. } 2 \)