Math III Exponential/Geometric Series

Exponential functions are of the form \(y = a(b)^x \), where \(a \) is the y-intercept or initial amount, and \(b \) is the growth/decay factor. If \(b > 1 \) it represents exponential growth and if \(0 < b < 1 \) it represents exponential decay.

\[
\text{Ex1: } f(x) = 5,236(1.08)^x \text{ exponential growth, growth rate is 8%} \\
\text{Ex2: } f(x) = 2,873(0.91)^x \text{ exponential decay, decay rate is 9%}
\]

Compounded interest uses the formula \(A = p\left(1 + \frac{r}{n}\right)^{nt} \), where \(p \) is the principle, \(r \) is the rate, \(t \) is the time, and \(n \) is the number of times the interest is compounded. (monthly \(n = 12 \), weekly \(n = 52 \), etc.)

Continuously compounded interest uses the formula \(A = Pe^{rt} \), where \(p \) is the principle, \(r \) is the rate, and \(t \) is the time.

Mortgage Formula - monthly payment \(= \frac{pi}{1-(1+i)^{-n}} \) where \(p \) is the principle, \(n \) is the number of total payments, \(i \) is the monthly interest rate.

Sum of finite geometric series is found by \(S_n = \frac{a_1(1-r^n)}{1-r} \), where \(a_1 \) is the first term, \(r \) is the ratio (what each term is multiplied by to get to the next), \(n \) is term number the series stops.

Examples:

1. 288, -96, 32, ... What is the approximate value of the sum of the 7th term?
 \[
 \frac{288(1-(-\frac{1}{3})^7)}{1-(-\frac{1}{3})} = 216.1
 \]

2. 360 + 480 + 640 + ... What is the approximate value of the sum of the 15th term?
 \[
 \frac{360(1-\left(\frac{4}{3}\right)^{15})}{1-\frac{4}{3}} = 791.737.39
 \]

3. What is the approximate value of the sum:
 \[
 8 - \frac{8}{7} + \frac{8}{49} - \cdots 8 \cdot \left(\frac{-1}{7}\right)^{2500} \quad \text{or} \quad \frac{8(1-(-\frac{1}{7})^{2500})}{1-(-\frac{1}{7})} = 7
 \]
4. Find the monthly payment of $175,000 home on a 30 year mortgage with a 3.5% interest rate.

\[
i = 1.035^{\frac{1}{12}} = 1.00287
\]

\[
175,000 \times \frac{0.00287}{1 - (1 + 0.00287)^{-360}} = 780.37
\]

5. Angela deposited $3000 into a savings account earning 4% interest compounded continuously, how much will she have after 6 years?

\[
P e^{rt} = 3813.75
\]

6. Sam deposited $5,500 into a savings account earning 5.6% interest compounded monthly. How many years had he been saving when the savings account has a balance of $8599.52?

\[
8,599.52 = 5,500 \times (1 + \frac{0.056}{12})^{12x}
\]

\[
\frac{8,599.52}{5,500} = (1.0046)^{12x}
\]

\[
1.56 = (1.0046)^{12x}
\]

\[
\log_{1.0046} 1.56 = 12x
\]

\[
x = 8.07
\]

7. Mary wants a dress that costs $450 for the prom. So far she has saved $275 and put it in a savings account for 1.5 years, what interest rate must she earn to have $450 by prom? (compounded continuously)

\[
\frac{450}{275} = e^{1.5x}
\]

\[
\ln 1.64 = 1.5x
\]

\[
x = 0.329 = 32.9\%
\]

8. A board is made up of 9 squares. A certain number of pennies is placed in each square, following a geometric sequence. The first square has 1 penny, the second has 2 pennies, the third has 4 pennies, etc. When every square is filled, how many pennies will be used in total?

A. 521 B. 511 C. 256 D. 81

\[
\begin{array}{ccc}
1 & 2 & 4 \\
8 & 16 & 32 \\
64 & 128 & 256 \\
\end{array}
\]