SECTION 19.3 Measuring and Locating Earthquakes

In your textbook, read about earthquake magnitude and intensity.
Circle the letter of the choice that best completes the statement.

1. The amount of energy released by an earthquake is measured by its
 a. amplitude. b. magnitude. c. focus. d. intensity.

2. The Richter scale is a numerical scale used to describe an earthquake's
 a. intensity. b. amplitude. c. probability. d. magnitude.

3. Each whole-number increase on the Richter scale corresponds to a 32-fold increase in
 a. seismic energy. b. magnitude. c. probability. d. intensity.

4. The moment magnitude scale takes into account the size of an earthquake's
 a. epicenter. b. fault rupture. c. probability. d. intensity.

5. Moment-magnitude values can be estimated from the
 a. P-wave arrival time. b. S-wave arrival time. c. surface wave arrival time. d. seismic wave size.

6. The amount of damage done to structures by an earthquake is the earthquake's
 a. intensity. b. amplitude. c. probability. d. seismic gap.

7. The modified-Mercalli scale measures an earthquake's
 a. intensity. b. seismic gap. c. probability. d. magnitude.

8. The modified-Mercalli scale ranges from
 a. 0 to 100. b. 1 to 10. c. I to XII. d. VI to XXI.

9. Earthquake intensity depends primarily on the height of

10. As the distance from a quake's epicenter increases,
 a. intensity increases. b. intensity decreases. c. magnitude increases. d. the focus decreases.

11. Maximum earthquake intensity is usually found at the earthquake's
 a. epicenter. b. shadow zone. c. seismic gap. d. focus.

12. One factor that determines the strength of an earthquake is the depth of its
 a. epicenter. b. episcopal distance. c. magnitude. d. focus.

13. The focus of a catastrophic earthquake with high intensity values is almost always
 a. deep. b. shallow. c. difficult to determine. d. below the point of initial rock failure.
SECTION 19.3 Measuring and Locating Earthquakes, continued

In your textbook, read about how scientists locate an earthquake's epicenter. Label the diagram below. Choose from the following: epicenter, epicentral distance, seismic station.

14. __________________________ 15. __________________________

16. __________________________

Answer the following questions.

17. To determine an epicentral distance, scientists consider the arrival times of what wave types?

18. Can the location of an epicenter be determined from the distance between one seismic station and the epicenter? If not, what information is needed?

In your textbook, read about Earth's seismic belts. Use each of the terms below just once to complete the passage.

Circum-Pacific Belt boundaries tectonic plates
Mediterranean-Asian Belt ocean ridges seismic belts

Most earthquakes occur in narrow (19) __________________________ that lie between large regions with little or no seismic activity. Seismic activity in seismic belts is a result of movements among Earth's (20) __________________________. Most earthquakes occur near the (21) __________________________ of tectonic plates. Nearly 80 percent of earthquakes occur in the (22) __________________________. About 15 percent of all earthquakes occur in the (23) __________________________, which stretches across Europe and Asia.

Most other earthquakes occur on the crests of (24) __________________________.
Section 19.3 Measuring and Locating Earthquakes (continued)

Main Idea

Earthquake Magnitude and Intensity

Details

Differentiate between the three scales that are used to describe earthquakes. Write the name of each scale and describe what it measures in the concept map.

Describe the difference between the magnitude and the intensity of an earthquake.

State the three ways the depth of an earthquake's focus can be classified.

1.

2.

3.

From the three classifications above, circle the depth of focus for almost all catastrophic quakes.